Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Virol J ; 12: 85, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26050791

RESUMO

BACKGROUND: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response. METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients. RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed. CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.


Assuntos
Infecções por Enterovirus/diagnóstico , Enterovirus/isolamento & purificação , Reação em Cadeia da Polimerase Multiplex/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Ásia , Criança , Pré-Escolar , Enterovirus/classificação , Enterovirus/genética , Feminino , Humanos , Lactente , Masculino , Reação em Cadeia da Polimerase Multiplex/normas , Faringe/virologia , Reação em Cadeia da Polimerase em Tempo Real/normas , Reto/virologia , Padrões de Referência , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Sensibilidade e Especificidade
2.
J Virol Methods ; 215-216: 30-6, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25704598

RESUMO

Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.


Assuntos
Enterovirus Humano A/classificação , Enterovirus Humano A/genética , Genoma Viral , Doença de Mão, Pé e Boca/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Pré-Escolar , Enterovirus Humano A/isolamento & purificação , Variação Genética , Humanos , Vietnã
3.
PLoS Med ; 7(5): e1000277, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20502525

RESUMO

BACKGROUND: To date, little is known about the initial spread and response to the 2009 pandemic of novel influenza A ("2009 H1N1") in tropical countries. Here, we analyse the early progression of the epidemic from 26 May 2009 until the establishment of community transmission in the second half of July 2009 in Ho Chi Minh City (HCMC), Vietnam. In addition, we present detailed systematic viral clearance data on 292 isolated and treated patients and the first three cases of selection of resistant virus during treatment in Vietnam. METHODS AND FINDINGS: Data sources included all available health reports from the Ministry of Health and relevant health authorities as well as clinical and laboratory data from the first confirmed cases isolated at the Hospital for Tropical Diseases in HCMC. Extensive reverse transcription (RT)-PCR diagnostics on serial samples, viral culture, neuraminidase-inhibition testing, and sequencing were performed on a subset of 2009 H1N1 confirmed cases. Virological (PCR status, shedding) and epidemiological (incidence, isolation, discharge) data were combined to reconstruct the initial outbreak and the establishment of community transmission. From 27 April to 24 July 2009, approximately 760,000 passengers who entered HCMC on international flights were screened at the airport by a body temperature scan and symptom questionnaire. Approximately 0.15% of incoming passengers were intercepted, 200 of whom tested positive for 2009 H1N1 by RT-PCR. An additional 121 out of 169 nontravelers tested positive after self-reporting or contact tracing. These 321 patients spent 79% of their PCR-positive days in isolation; 60% of PCR-positive days were spent treated and in isolation. Influenza-like illness was noted in 61% of patients and no patients experienced pneumonia or severe outcomes. Viral clearance times were similar among patient groups with differing time intervals from illness onset to treatment, with estimated median clearance times between 2.6 and 2.8 d post-treatment for illness-to-treatment intervals of 1-4 d, and 2.0 d (95% confidence interval 1.5-2.5) when treatment was started on the first day of illness. CONCLUSIONS: The patients described here represent a cross-section of infected individuals that were identified by temperature screening and symptom questionnaires at the airport, as well as mildly symptomatic to moderately ill patients who self-reported to hospitals. Data are observational and, although they are suggestive, it is not possible to be certain whether the containment efforts delayed community transmission in Vietnam. Viral clearance data assessed by RT-PCR showed a rapid therapeutic response to oseltamivir.


Assuntos
Surtos de Doenças , Vírus da Influenza A Subtipo H1N1 , Influenza Humana/epidemiologia , Programas de Rastreamento , Aeronaves , Transmissão de Doença Infecciosa/prevenção & controle , Transmissão de Doença Infecciosa/estatística & dados numéricos , Humanos , Incidência , Influenza Humana/tratamento farmacológico , Influenza Humana/transmissão , Oseltamivir/uso terapêutico , Fatores de Tempo , Viagem , Vietnã/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...